Andrew Ng’s online Stanford University machine learning classes serve as a gateway to understanding for many of today’s data scientists, and a discussion he led this summer at Stanford’s Graduate School of Business is noted here as extraordinary. It provides for a clear view of possible futures he offers tomorrow’s AI practitioners. They must, like most of us, wonder where all this is going.
Said Ng: “It feels like a bunch of us have been talking about AI for 15 years or something. But if you look at where the value of AI is today, a lot of it is still very concentrated in the consumer software internet. Once you get outside tech or consumer software internet, there’s some AI adoption – but it all feels very early.”
Andrew Ng stands out among the ranks of machine learning scientists, notable for research, entrepreneurship, and teaching. He helped form and lead the Google Brain Team, has helped redefine the world of machine vision, and done a stint building the neural net and machine learning efforts at Baidu.
THIS IS PART 2 OF 2. FOR PART 1, GO TO: Old Big Data Today – Or the clarion of shiny new thingness |
In 2014, he and his team at Google Brain published an influential paper on convolutional neural networks capable of supervised learning. Such supervised learning paved the way for today’s Generative AI.
“About 10, 15 years ago, my friends and I figured out a recipe for how to hire, say, 100 engineers to write one piece of software to serve more relevant ads, and apply that one piece of software to a billion users, and generate massive financial value,” he said, “But once you go outside consumer software internet, hardly anyone has 100 million or a billion users that you can … apply one piece of software to.”
A multibillion dollar blockbusting winner project a Google or Amazon could muster and accomplish is one thing, all else is another. That was a major context in the days of Big Data (2014-2019). It bears note: The similarity of the ‘Large’ in Large Language Model and the ‘Big’ in Big Data.
Ng’s groundbreaking Google work was followed by leading roles at AI venture funds and startups including AI Fund, Landing AI and DeepLearning.AI. The work there now entails a search for cost-effective use cases for the latest AI breakthroughs.
There are interesting projects to pursue but, he suggests, they don’t usually avail a type of return commensurate with the needed developer effort. From use case to use case, there’s work to do, and caveats to consider.
Ng has worked with consumer packaged food makers to better systematize cheese patterns on pizza. As big as that app may be, is not a “recipe for hiring a hundred or dozens of engineers.” The project value may be, for example, $5 million. He cited another perhaps typical AI brainstorm: To get wheat to grow straighter. Again, the return on the investment was not so favorable.
Then there is the cautionary moment. From Ng’s point of view, the work on use cases that can benefit from the tools of generative AI will also be marked by short-term fads along the way. Such a fad was Prisma Labs’ Lensa AI photo app, which turned selfies into professional looking digital art. That petered out like the ‘50s hula hoop. You can cite more of such. With generative AI, we’ve seen more than a bit of that already.
He does suggest the time and coding power needed to create the early-move AI apps, is shrinking — that Generative AI’s potential to streamline programming is crucial there. – Jack Vaughan
Worth noting: As one of the fathers of supervised learning, Ng naturally avows that this earlier discovery still has legs – that the bounty of supervised learning is still being mined for commercial effect. That may well have been missed in Wall Street’s mark-up of AI futures, and should not be ignored as Gen AI hype begins to damper lightly.
There’s a lot more to learn, in what ever modes we choose. I recommend Andrew Ng’s lecture on AI Opportunities. [On YouTube.]
Orthogonal Sideshow: Investor and philosopher Nasim Taleb had recent comment of interest on LLM prompting process and entropy. Clicker beware: You are entering the realm of X.