• Skip to primary navigation
  • Skip to main content
Progressive Gauge

Progressive Gauge

Media and Research

  • Home
  • About
  • Blog
  • Projects, Samples and Items
  • Video
  • Contact Jack
  • Show Search
Hide Search

AI

Large models cooling

July 16, 2023 By Jack Vaughan

Molecular Sampler – The week just passed brought news of a combined MIT/IBM team suggesting a less compute-intensive route to AI-driven materials science.  The group said it used a subset of a larger data pool to predict molecular properties. The use case has gained attention in both ML and quantum computing circles – where a drive to speed material development and drug discovery could lead to cost savings, better health outcomes and yet-to-be-imagined innovations.

Like most AI advances of late, the work gains inspiration from NLP techniques. The methods used to predict molecular properties tap into “grammar rule production,” which by now has a long lineage. There are 1 followed by 100 zeros of ways to combine atoms, which is to say grammar rule production for materials is a big job, and that style of computation is daunting and may not be immediately exploited.

Because the grammar rule production process is too difficult even for large-scale modern computing, the research team put its efforts into preparatory paring of data, a short-cut technique that goes back to the beginning of time. Some notes from the MIT information office:

“In language theory, one generates words, sentences, or paragraphs based on a set of grammar rules. You can think of a molecular grammar the same way. It is a set of production rules that dictate how to generate molecules or polymers by combining atoms and substructures.

“The MIT team created a machine-learning system that automatically learns the “language” of molecules — what is known as a molecular grammar — using only a small, domain-specific dataset. It uses this grammar to construct viable molecules and predict their properties.

As I read it, the MIT-IBM team have come up with a simulation sampler approach. The ‘smaller corpus’ approach is much explored these days as implementers try to take some of the ‘Large’ out of Large Language Models. One may always wonder if such synthesis ultimately can gain true results. I trust an army better qualified will dig into the details of the sampling technique used here over the weekend.

***  ***  ***  ***

ChatGPT damper – The signs continue to point to a welcome damper on ChatGPT (AI) boosterism – now that each deadline journalist in the world has asked the bot to write up a global heatwave story or Met red-carpet opening story in the style of Hemingway or Mailer or another.

Among the signals of cooling:

*There’s investor Adam Coons. The Chief Portfolio Manager at Winthrop Capital Management said AI on Wall Street will continue but then fade as a hot button.

For a stock market that has endorsed Mega cap growth stocks for their ChatGPT chops, it has become a FOMO trade. “In the near term that trade will continue to work. There’s enough investors still willing to chase that narrative,” he told Reuters. On the other hand, Coons and Winthrop Capital are cautious on it, as the hyperbole has obscured the true potential. He said:

“We are moving away from the AI narrative. We think that there’s still too much to be shown. Particularly [with] Nvidia, we think the growth figures that are being priced into that stock just don’t make sense. And there’s just really not enough proof statements from a monetization standpoint behind what AI can really do within the tech sector.”

*There’s Pincecone COO Bob Wiederhold speaking at VB Transform – Pinecone is in the forefront of up-surging Vector Databases that appear to have a special place in formative LLM applications. Still, Wiederhold sees need for a realistic approach to commercializing the phenomenon.

His comments as described by Matt Marshall on VentureBeat:

Wiederhold acknowledged that the generative AI market is going through a hype cycle and that it will soon hit a “trough of reality” as developers move on from prototyping applications that have no ability to go into production. He said this is a good thing for the industry as it will separate the real production-ready, impactful applications from the “fluff” of prototyped applications that currently make up the majority of experimentation.

*There’s Rob Hirschfeld commentary “Are LLMs Leading DevOps Into a Tech Debt Trap?” on DevOps.com – Hirschfeld is concerned with the technical debt generative AI LLMs could heap onto today’s DevOps crews, which are already awash in quickly built, inefficiently engineered Patch Hell. Code generation is often the second-cited LLM use case (after direct-mail and press releases).

Figuring out an original developer’s intent has always been the cursed task of those who maintain our innovations – but LLM’s has the potential to bring on a new mass of mute code fragments contrived from LLM web whacks. Things could go from worse to worser, all the rosy pictures of no-code LLM case studies notwithstanding. Hirschfeld, who is CEO at infrastructure consultancy  RackN, writes:

Since they are unbounded, they will cheerfully use the knowledge to churn out terabytes of functionally correct but bespoke code…It’s easy to imagine a future where LLMs crank out DevOps scripts 10x faster. We will be supercharging our ability to produce complex, untested automation at a pace never seen before! On the surface, this seems like a huge productivity boost because we (mistakenly) see our job as focused on producing scripts instead of working systems…But we already have an overabundance of duplicated and difficult-to-support automation. This ever-expanding surface of technical debt is one of the major reasons that ITOps teams are mired in complexity and are forever underwater.

News is about sudden change. Generative AI, ChatGPT and LLMs brought that in spades. It is all a breathless rush right now, and analysis can wait. But, the limelight on generative AI is slightly dimmed. That is good because what is real will be easier to see. Importantly, reporters and others are now asking those probing follow-up questions like: “How much how soon?”

It’s almost enough to draw an old-time skeptical examiner into the fray. – Jack Vaughan

 

Adage

“Future users of large data banks must be protected from having to know how the data is organized in the machine….” E.F. Codd in A Relational Model of Data for Large Shared Data Banks

Kreps, Dorsey, riff on ChatGPT

May 29, 2023 By Jack Vaughan

Stagg Field Nuclear Pile [fragment]

[Boston — May 2023] — “It’s a law that any conversation around technology has to come back to AI within five minutes.”

Well put, Jay Kreps, co-founder and CEO for real-time streaming juggernaut Confluent. Speaking at J.P. Morgan’s Boston Tech Investor event, Kreps knew this was coming. ChatGPT rules the news these days.

Given the daily pounding of 1,000 reporters’ laptops, given Nvidia’s vault into the highest clouds of valuation, it is no surprise that ChatGPT generative AI is the recurring topic. It will impede all other discussion, just as expected by tech stalwarts at J.P. Morgan’s and others’ tech events.

It’s the 600-lb. ChatBot in the room, and it is bigger than big.

Confluent chief on Chatbot interaction

Back in the nascent days of social media, the founders of Confluent, then working at LinkedIn, created a distributed commit log that stored streams of records. They called it Kafka and grew it out into a fuller data stream processing system. It’s intent is to bring to the broader enterprise real-time messaging capabilities akin to that of the Flash Boys of Wall Street.

The company is still in “spend a buck to make a buck” mode. For the quarter ending March 31, Confluent revenues increased 38% to $174.3M, while net jumped 35% to $152.6M. Customers include Dominos, Humana, Lowes, Michelin and others. In January it purchased would-be competitor, Immerok, a leading contributor to the Apache Flink stream processing project.

What’s the significance of real-time streaming in “the age of AI,” Kreps is asked at the Boston event. He says:

It’s really about how a company can take something like a large language model that has a very general model of the world and combine it with information about that company, and about customers, and be able to put those things together to do something for the business.

He gives an example: A large travel company wants to have an interactive chatbot for customers. Seems the barrier ChatGPT faces there for improvements is not so high. As Kreps said: “The chatbots were always pretty bad. It’s like interacting with like the stupidest person that you’ve ever talked to.”

Improvements needed for chatbots include a real-time view of all the information the company holds about customers and operations.

What do you need to make that work? Well, you need to have the real-time view of all the information about them, their flights, their bookings, their hotel, are they going to make their connection, etcetera. And you need a large language model which can take that information and answer arbitrary questions that the customer might ask. So the architecture for them is actually very simple. They need to put together this real time view of their customers, what’s happening, where the flights are, what’s delayed what’s going on. And then they need to be able to call out to a service for the generative AI stuff, feed it this data, feed it the questions from customers, and … integrate that into their service, which is very significant. This is a whole new way of interacting with their customers. And I think that that pattern is very generalizable.

Popping the question: Dorsey

For Jack Dorsey, the question “What about ChatGTP?” is raw meat. He melded SMS and the Web to create Twitter, and now with a nod to bitcoin and block chain has built Block, nee Square. The financial services and digital payments company posted revenue results for the three months ended April 1 that increased 26% to $4.99B, while net loss decreased a significant 92% to $16.8M. The good news was based on increased use of its Cash App product.

At the J.P. Morgan tech investor conference, Dorsey told the people, while hype obviously abounds, true progress rides on use cases.

There’s a ton of hype right now. And I think there’s a lot of companies being started that are going to fail because of that hype. I think the technology industry is very trendy, and very fashionable and jumps from one thing to the next, to the next, to the next. It wasn’t so long ago that we were only talking about Bored Apes and Crypto and NFTs and now we’re talking only about AI and how it’s going to kill us.

There’s always some truth in all these things. I just would caution any company that’s approaching it from a technology perspective, [to] instead use a use case perspective. What is the use case you’re trying to solve? And what technologies can you use to solve it more creatively?

THAT’S THE WAY IT IS — Clearly, panelists and podiumists are preparing to take on ChatGPT questions. At the same time, the clamor of the now will shift to prioritizing generative AI strategically within a host of technology initiatives. ChatGPT may be generalizable — but the proof will not appear overnight. The proof is in the business use case.

Big embedded player Infineon snags Tiny MLer Imagimob

May 24, 2023 By Jack Vaughan

Infineon Technologies AG  last week acquired Stockholm-based Imagimob AB, one of the most active players bringing AI to edge devices.

 

[Published May 24, 2023] – Germany-based chip maker Infineon Technologies AG  last week acquired Stockholm-based Imagimob AB, one of the most active players among a slew of startups seeking to bring AI-based machine learning to embedded devices on the edge of the Internet of Things (IoT). Terms were not disclosed.

 

Imagimob provides end-to-end development tools and cloud-based services intended to bring the much-vaunted capabilities of neural machine learning (ML) models from the cloud data center to edge devices. These devices have small footprints, rigorous memory limits, and strict constraints on power consumption. The aspiration to do a lot with little is summed up in the umbrella term “TinyML.”

 

The edge AI devices that Imagimob seeks to support also must cope with a wide variety of sensor types, including sensors that measure and analyze vision, movement, pressure, heat, velocity and other data formats. Business uses are broad, ranging from surveillance cameras and refrigerator monitors in retail settings to actuators and anomaly detectors in oil industry field equipment, and beyond.

 

Infineon’s Thomas Rostech said the purchase is based on his company’s contention that artificial Intelligence and machine learning are about to enter every embedded application, enabling new functionalities. In a statement, Rosteck, who is president of Infineon’s Connected Secure Systems division, boosted Imagimob’s platform and expertise in developing machine learning for edge devices.

 

In recent years, Infineon has worked to build out a portfolio of advanced sensors and IoT solutions. This is an area in which software is expected to play a key role. For example, the market for edge AI software is set to grow to €10.0B in 2032, from €738.5M in 2022, for a CAGR of 29.8% over the forecast period, according to Global Edge AI Software Market Research.

 

Founded in 2013, Imagimob tech- and business-side leaders came out of the mobile applications market. Since inception, its teams have worked on a wide variety of edge AI use cases. These include gunshot and other audio event detection, fall detection, condition monitoring, signal classifiers, safety vests, and more.

 

Imagimob has been highly active within the TinyML community, centered in part around the TinyML Foundation, which is dedicated to nurturing ultra-low power machine learning. Imagimob software has been demoed in showcases with Synaptics, Syntiant, Texas Instruments, and other edge AI hardware concerns.

 

Responding to request for comment, an Infineon spokesperson said the company plans to integrate Imagimob into its organizational structure and that customer relationships with Imagimob’s customers will continue, including partners working on competitor’s hardware, “in alignment with the compliance regulations.”

 

To date, IoT growth has been fitful in the enterprise, as businesses look to move past proof-of-concept projects and achieve return-on-investment. Potential enterprise application areas that include retail, healthcare, supply chain and other operations are places where processing data on the edge translates into cost savings versus processing data in the cloud. The need to off-load processing to the edge becomes more acute as data intensive AI and machine learning capabilities come into play. Imagimob efforts to enable AI’s march from data center to the Internet’s edge are expected to fill out more fully with the backing of the larger chip maker Infineon.

 

Enterprise IoT has lost some luster in recent years as vendors grapple with a very extensive array of use cases. Intelligence in the form of machine learning makes sense, and so does the rise of TinyML as a next stage in delivering on the wide promise of IoT. But deep resources and breakthroughs on the software development side are required. That is at the same time that the venture capital markets have become less benign. So, more matches such as Infineon’s and Imagimob can be anticipated. – Jack Vaughan

The March of the Language Models

April 17, 2023 By Jack Vaughan

[April 17, 2023] – Had the opportunity to speak with Forrester Analyst Ronan Curran recently for a VentureBeat article. Of course, the topic was ChatGPT, generative AI, and Large Language Models.

His counsel was both optimistic and cautionary – a good summation of the bearings IT decision makers should set as they begin yet another tango with a new technology meme.

A handy summarizer-paraphraser tells me that Curran told VentureBeat that it would be a mistake to underestimate the technology, although it is still difficult to critically examine the many potential use cases for generative AI.

Yes, such applies to each technical challenge – every day. And it bears repeating as each new technology whispers or yells that the fundamental rules no longer apply – and yet they do.

Looking back on my conversation with Curran, I find insight in what some would say is obvious. The large language models are … large! And, as Curran told me, because they are large, they cost a lot to compute and train. This reminds us, as others have, that the LLM should be viewed like polo or horse racing – as a game for the rich.

Why do we say game for the rich? On one level, the LLM era stacks up as megacloud builders’ battle, albeit with aspects of the playground grudge match. Microsoft leader Satya Nadella, who had the thankless task of competing with Google on the search front, almost seems to chortle: “This new Bing will make Google come out and dance, and I want people to know that we made them dance.”

For the cloud giants, the business already had aspects of a war of attrition, as they staked data center regions across the globe. The folks at Semianalysis.com have taken a hard stab at estimating a day in the life of an LLM bean counter, and they suggest a “model indicating that ChatGPT costs $694,444 per day to operate in compute hardware costs.” Of course, these are back of the envelope estimates – and the titans that host LLMs will look to engineer savings.

The new LLM morning summons to mind a technology that  consumed  much attention not so long ago: Big Data. The magic of Hadoop had a difficult time jumping from the likes of Google, Facebook and Netflix to the broader market. Maybe Big Data should have been named ‘Prodigious Data’ – because that would have offered fairer warning to organizations that had to gather such data, administer it, and come up with clever and profitable use cases.

“What is Big Data good for?” was a common question, even in its heyday. Eventually the answer was “machine learning”.

Much of Big Data remained in the realm of the prototype. In the end, it was a step forward for enterprise analytics. Successes and failures alike came under the banner of prototyping. Clearly, experimentation is where we are now with ChatGPT.

The more interesting future for more people may lie in outcomes with small language models, Forrester’s Curran told me. These will succeed or fail on a use case by use case basis.

As industry observer Benedict Evans writes in “ChatGPT and the Imagenet moment,” ChatGPT feels like a step-change forward in the evolution of machine learning. It falls something short of sentience. There is potential but there are plenty of questions to answer before its arc can be well gauged.  [eof]

Read “Forrester: Question generative AI uses before experimentation” – VentureBeat Feb 24, 2023
https://venturebeat.com/ai/forrester-question-generative-ai-uses-before-experimentation/

Read “ChatGPT and the Imagenet moment” – ben-evans.com Dec 14, 2022
https://www.ben-evans.com/benedictevans/2022/12/14/ChatGPT-imagenet

The Inference Cost Of Search Disruption – Large Language Model Cost Analysis – Semianalysis.com Feb 9, 2023
https://www.semianalysis.com/p/the-inference-cost-of-search-disruption

  • « Go to Previous Page
  • Go to page 1
  • Go to page 2
  • Go to page 3
  • Go to page 4

Progressive Gauge

Copyright © 2025 · Jack Vaughan · Log in

  • Home
  • About
  • Blog
  • Projects, Samples and Items
  • Video
  • Contact Jack